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Turbine Blade Icing Loss
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• Blade icing is the cause of large production losses through the winter 

months for many wind farms in the Nordics.

• Identifying and consistently 

labelling ice affected production is 

very time consuming to do 

accurately

• We have received a lot of interest 

surround IPS warranty reviews 

• SCADA data enables us to see 

how effective the systems are at 

maximizing performance during 

icing conditions.  

• These analyses require a large amount of data from multiple wind 

farms under varied conditions in order to provide credible results.  

Photo: Kent Larsson, ABVEE
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Power Curve Performance Analysis
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▪ SCADA analysis is essential for good analysis of turbine 

performance.

▪ Labelling performance issues accurately is time 

consuming and susceptible to human error

▪ Much of the effort in performance assessments are 

driven by SCADA analysis section of the work

▪ Labelling the data using simple logical filters is prone to 

errors as they miss the nuances in the data and 

legitimate differences between turbines

▪ Old automatic labelling models also fail to identify new 

performance issues
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Machine Learning Labelling Tool 

▪ A training dataset is prepared for each wind farm 

analysed by manually labelling a subset of the SCADA 

data from the wind farm

▪ Normalisation of power curves is necessary to create a 

consistent training dataset – this greatly improves the 

predictive performance across the wind farm  

▪ The normalised data is used to train a convolutional 

neural network
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▪ Time is considered when training the model in order 

to capture downtime/performance events 

▪ The model is then used to label the remaining data 

from the wind farm – provided the training data was 

high quality the model produces consistent 

results efficiently
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Example: Turbine Blade Icing Loss
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Example: Turbine Blade Icing Loss
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Predicted

Blade icing No icing

A
c
tu

a
l Blade icing 86.0% 14.0%

No icing 0.3% 99.7%

Machine learning labels Manual labels

• The model applies the learned 

flags with high precision

• Minimal manual flagging is 

required which can be carried out 

when checking the results
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Data Mining Overview

▪ 50 GW of operating wind and solar plant data 

▪ A suite of data mining tools can be used for analysis 

of the entire portfolio. 

▪ ‘Big questions’ can now be tackled efficiently using 

analytical methods 

▪ What questions would you ask 50 GW-worth of 

data? 
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600+ Windfarms, 

6,000+ turbines and 

20,000+ turbine years
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Data Mining Methodology

▪ ‘InFLOWS’ universal SCADA data ingest tool improving 

efficiency and standardising data.

▪ ML Flagging tool to speed up data labelling.

▪ Storage of standardised, cleaned and labelled datasets in 

Veracity data container.

▪ Data mining of Veracity data using Azure Databricks.
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Example: Turbine Degradation Study

▪ Assumed turbine degradation rate is an important input to an 

energy assessment of a wind farm – with a loss ranging from 

1.0% to 1.3% over 20 years. 
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▪ This study confirmed our 

assumptions 

▪ More work is being done to 

investigate how projects located in 

the Nordic region align with our 

turbine degradation assumptions 
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Drivetrain Integrity Monitor

▪ One of the six modules contained within 

WindGEMINI

▪ Failure detection algorithm that uses 

existing 10-minute SCADA data

▪ Based on trending of the temperature 

signals from the wind turbine drivetrain

▪ The assumption is that an increase in 

temperature is indicative of dissipation 

caused by an anomaly

▪ No additional sensors are required
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Machine Learning Approach
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Historical data Model training

y = f(x1,x2) 

Output estimate

ŷ = f(x1,x2) 

Measured input

x1,x2

Measured output
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Bode Diagram

Frequency  (rad/s)

Continuous

Discrete

▪ A period of normal operation is used to establish an expected 

relationship between input signals (power, ambient temperature, 

rotor speed) and the drivetrain temperatures being monitored

▪ The model is used for ongoing monitoring of the real temperatures

▪ Frequency domain filtering reduces noise and the impact of step 

changes (e.g. following sensor replacements), reducing the 

number of false positives

▪ A weighting function automatically assigns a gravity to the alerts

Nonlinear 
weighting 
function
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Case study – October 2017
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▪ In March 2017 a 2MW turbine experiences a 

gearbox failure

▪ WindGEMINI identifies an anomaly

following the return to service 

▪ Investigation showed one of the replaced 

components was defective

▪ Further analysis showed this was also having 

an effect on power curve efficiency (~94%)

▪ Issue was raised with the OEM and rectified, 

with an increase in performance and avoiding

the risk of another failure and claim



DNV GL ©

SAFER, SMARTER, GREENER

www.dnvgl.com

The trademarks DNV GL®, DNV®, the Horizon Graphic and Det Norske Veritas®

are the properties of companies in the Det Norske Veritas group. All rights reserved.

Thank you

14

Will Jowitt

will.jowitt@dnvgl.com

+4420 3816 6816


