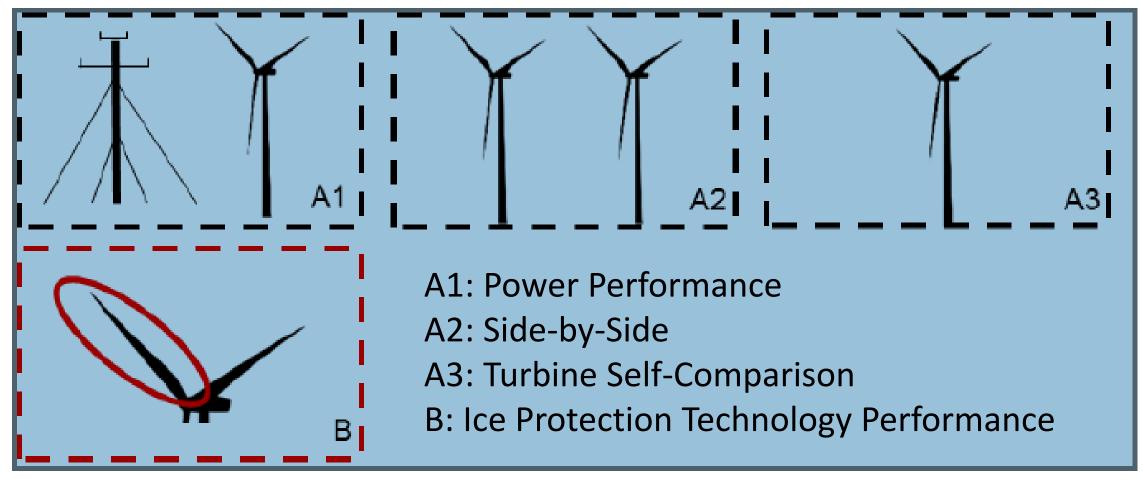
Ice protection systems and retrofits: Performance and experiences

Charles Godreau, P. Eng., M. Eng. Kossivi Tete, M.Sc. Nergica February 5, 2020, Åre, Sweden

- Evaluation of the performance of IPS and Retrofits
 - No standard evaluation method industry
 - Various results available using non-equivalent methods
- Help industry in comparing IPS and Retrofit technologies
- Identify improvements required to help technology providers
- Task 19 working towards standardization of IPS performance evaluation -> New guidelines coming in 2020!

- 1. Literature review of publically available IPS/Retrofit performance studies
 - 11 distinct studies
 - From 2011 to 2019
- 2. Open industry survey
 - 19 respondents
 - From 9 countries

Reporting performance studies



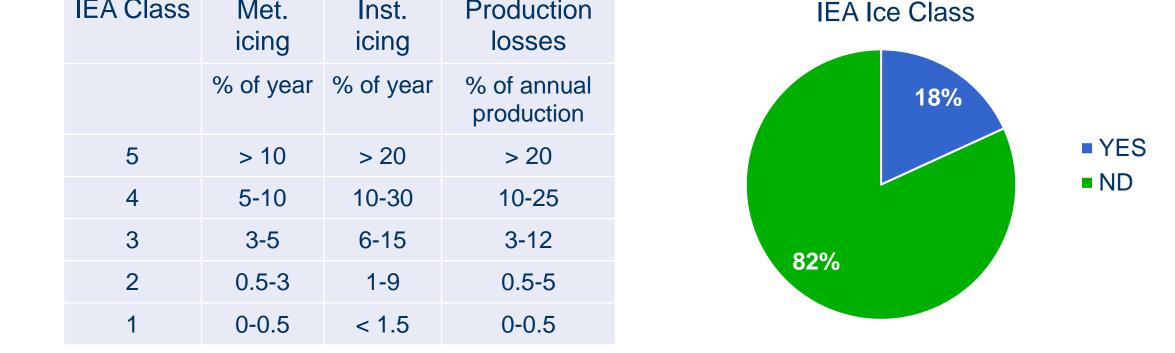
4

Manufacturer	Reference turbine	Performance metric
Technology	Stop turbine reference for Performance Analysis	Result
Operational strategy (Anti- icing / De-icing	IEA Ice class	Analysis period
New IPS/ Retrofit	Number of sites for performance studies	Evaluated by third-party
Method of performance evaluation	Number of turbines for performance studies	Energy consumption

Method of performance evaluation

This performance study review excludes B

Method of performance evaluation



6

Results Methodology 9% 9% - A2 - A3 91%

91 % of studies use side-by-side approach (A2), with an operating wind turbine without IPS as a reference.

Only two studies provided information useful for site comparison!

Production

Site comparison

Met.

Inst.

IEA Class

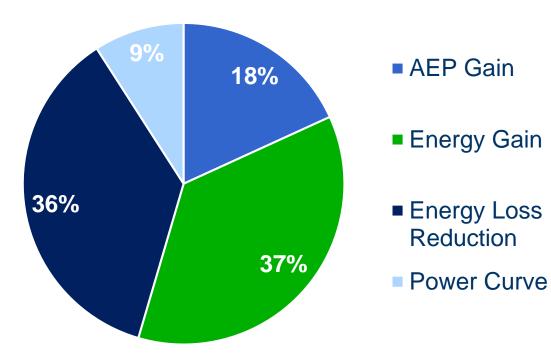
Scope of study

- Number of sites: Generally 1, up to 4
- Number of turbines: From 2 to 20
- Duration of study: Few months to 2 winters

Performance metrics

Power Curve

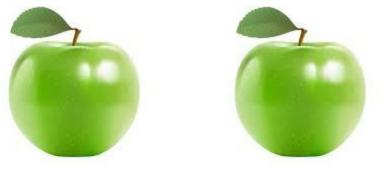
Energy Loss Reduction


Energy Gain

AEP Gain

Performance metrics

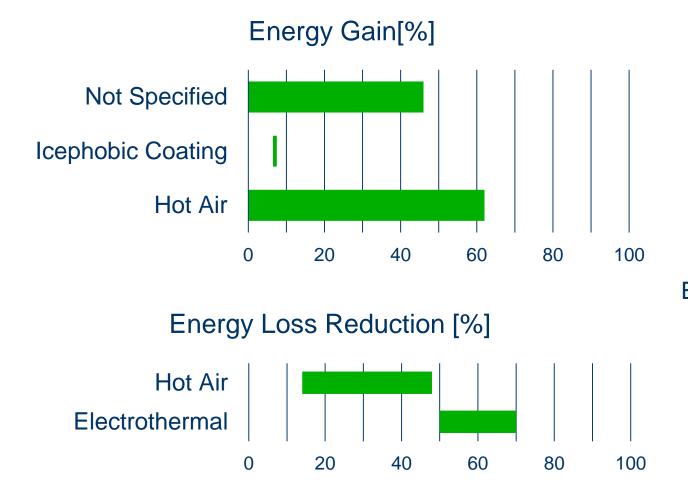
Performance Metrics

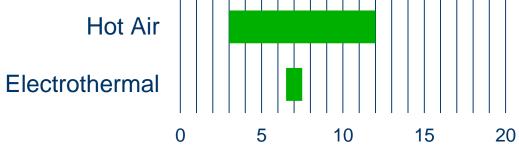

Most popular approaches are Energy Gain and Energy Loss Reduction: Are they the same?

Longer analysis periods required to compute AEP Gain

11

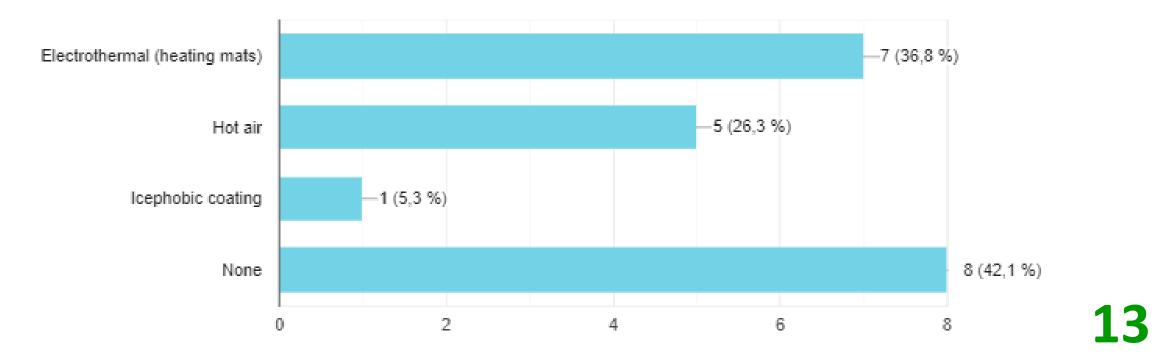
Comparing performance


- Technology
- Performance evaluation method
- Reference turbine used
- Performance metric
- Comparable sites

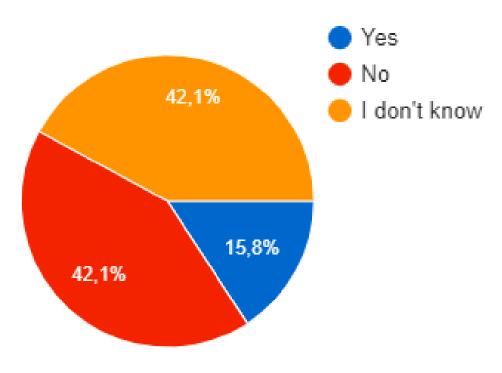


Performance range

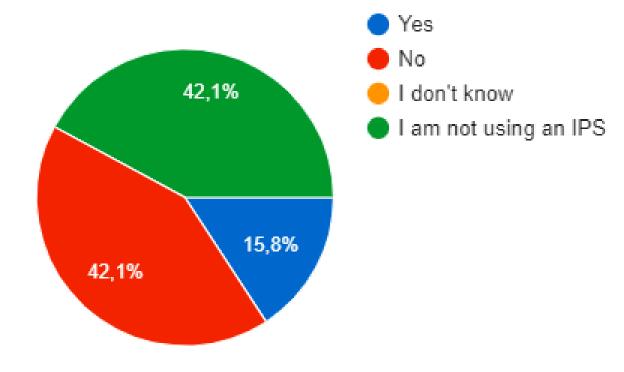
AEP Gain [%]



19 answers from 9 different countries


Small sample, results to be analyzed accordingly

In your organization, which Ice protection technology (IPT) are used?



Are you considering the purchase of IPS equipped turbines or retrofits in the near future (< 3 years) ?

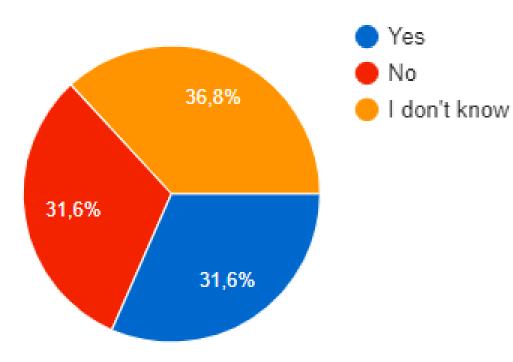
Are you satisfied with the performance of the IPS you are using?

Why are you not satisfied regarding IPS performance?

"Robustness is missing"

"Causing long standstill losses in low winds"

"Does not de-ice full blade which still gives losses."


"Don't reduce losses as projected. Only part of the blades are covered. Vortex vanes are not ice protected and creates lots of losses."

"The performance is lower than expected, especially at low temperature or high wind speed."

"Heating power is insufficient"

In your experience, do you consider that IPS are reliable?

Which sub-system is affecting the reliability of the IPS you are using?

- Ice detection and control algorithm
- Ice detection triggering heating element
- Control algorithm and power distribution
- Detection, control algorithm, heating elements, power transfer to the elements, mechanical organs of the system
- The default control algorithm is suboptimal
- Heating element

What do you think OEMs and IPS manufacturers should be focusing on to improve the performance of IPS?

"Improve reliability and performance envelope"

"Robustness and durability"

"Smarter or more adaptive, and efficient, de-icing cycles"

"Focus on making the de-icing more efficient time and power wise and to de-ice a larger section of the blade. Find a way to validate if the blade is de-iced enough or not."

"Focus of de-icing to where it makes most effect. I.e. outer half of blades and including Vortex Generators"

What do you think OEMs and IPS manufacturers should be focusing on to improve the performance of IPS? (continued)

"Detection/anticipation of icing events"

"Smarter (predictive) control algorithms, more heating power, heating during operation." "Freely available data of the turbines as well as performance data are necessary to increase the performance of the systems."

"Reliability, power consumption"

"Cost"

"Reliability of the system during operation and making the system accessible for maintenance."

- Industry has not come to a standardize evaluation method, this causes dissatisfaction: performance is not meeting expectations -> T19 warranty guidelines to be updated
- Performance of IPS is inconsistent, both in performance studies and end-users opinion
- Robustness and reliability of IPS must be improved
- Other improvements for IPS: Earlier ice detection, adaptive control, increased power and lower costs

Thank you!

2	1

Reference	Manufacturer	Technology	Operational Strategy (Anti- icing / De-icing)	IPS (Delivered during construction) or Retrofit (On existing turbine)	Method of Performance Evaluation [1]	Reference Turbine	Stopped reference turbine for performance analysis	IEA Ice Class	Number of sites for performance studies	Number of turbines for performance studies	Performance Metric	Result [%]	Analysis period	Third party for EVALUATION? Yes/No	Power/Energy Consumption
[2] S. Trudel et C. Godreau, [3] P. Antikainen , M. W.Gagnon [4] *	Wicetec	Electro-thermal	Anti-icing	Retrofit	A2	Yes	No		1	5	Energy Loss Reduction	50	2017-2018	Yes	
[5] K. Sachse	Nordex	Electro-thermal	Anti-icing	IPS	A2	Yes	No		1	2	Power Curve			No	
[6] N. Lehming	Nordex	Electro-thermal	Anti-icing	IPS	A2	Yes	No			2	AEP Gain	8	2011	No	<0.3% of AEP
[6] N. Lehming	Nordex	Electro-thermal	Anti-icing	IPS	A2	Yes	No			20	Energy Loss Reduction	70	2013-10 t 2014-03	⁰ Yes	
[7] S. Barup	Enercon	Hot air	De-icing	IPS	A2	Yes	No		4	8	AEP Gain	3 to 12		No	46 to 225 kW
[8] R. Cattin	Enercon	Hot air	De-icing	IPS	A2	Yes	No		3	6	Energy Loss Reduction	14 to 27	01-04 2013	Yes	46 to 225 kW
[9] T. Karlsson				IPS	A3	NA3		2 to 4	4	4	Energy Gain	0 to 45	2016-2018	Yes	
[10] M. Yamazaki et al.	NTT-AT	Icephobic coating	Passive	Retrofit	A2	Yes	No		1	3	Energy Gain	7	11-12 2018	Yes	
[11] D. Roeper	Borealis Wind	Hot air	Both	Retrofit	A2	Yes	No		1	2	Energy Gain	62	11-12 2018	No	
[12] S. Kolar			Both		A2	Yes	No		3		Energy Gain	-1 to 12	2014-2015	Yes	

Yes No

3

A2

Energy Loss Reduction

8

2

47.5

2017-2018 Yes

IPS

De-icing

Appendix 1 : Summary of published studies

[13] A. Stokl, A. Krenn

Vestas

Hot air

[1] IEA Wind TCP Task 19, Performance Warranty Guidelines for Wind Turbines in Icing Climates, 2018.

- [2] Sébastien Trudel (EDF énergies nouvelles) et Charles Godreau (Nergica), "RETROFITTING THE WICETEC ICE PROTECTION SYSTEM : OUR EXPERIENCE," Winterwind, no. February, 2018.
- [3] Petteri Antikainen (WICETEC), "Retrofit Ice Prevention System," Winterwind, 2018.
- [4] Matthew Wadham Gagnon, "Ice Protection Systems: Performance Assessment Methodology," Winterwind, 2018.
- [5] K. Sachse, "Nordex Advanced Anti-Icing System," Winterwind, no. February, 2018.
- [6] N. Lehming, "Performance Analysis of an Anti-Icing System," Optim. Wind farms cold Clim., May, 2015.
- [7] S. Barup, "More than 20 years of experience Retrospect and outlook of ENERCON's cold climate technologies," Winterwind, 2018.
- [8] R. Cattin, S. Dierer, R. Gugerli, M. Müller, and S. Koller, Performance of ENERCON wind turbines under icing conditions in Europe. Winterwind, 2014.

- [9] T. Karlsson, "Performance Benchmark Analysis of Istio and Linkerd," Winterwind, 2019.
- [10] M. Yamazaki, S. Kimura, P. Rossi, E. Stavropoulou, and K. Morita, "Icing alleviation for wind turbines with no ice-protected blades," Winterwind, 2019.
- [11] D. Roeper, "Borealis Wind," Winterwind, 2019.
- [12] S. Kolar, "A Comparison of Three Different Anti-and De-Icing Techniques Based on SCADA-Data," IWAIS, 2015.
- [13] A. Stockl, A. Krenn, "Evaluation of the Vestas De-Icing System Summary Report," Energiewerkstatt, 2019
- [14] A. Bégin-drolet, P. Roberge, J. Ruel, and J. Lemay, "How Efficient is Your Blade Heating?," in Winterwind International Wind Energy Conference, 2019.
- [15] P. Egedal, "Leveraging insight from operational data to optimize performance in cold climates," Winterwind, 2018.
- [16] S. and S. M. Baltscheffsky, "Variability in Ice Protection System efficiency," Winterwind, 2018.

- [17] C. Antonini, M. Innocenti, T. Horn, M. Marengo, and A. Amirfazli, "Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems," Cold Reg. Sci. Technol., vol. 67, no. 1–2, pp. 58–67, 2011.
- [18] R. Prieto, "Performance indices for icephobic coatings," Winterwind, 2018.
- [19] B. Birkemose, "Siemens Wind Power Blade De-Icing," WinterWind, 2015.
- [20] Enercon, "Ice Detection & Blade Heating Systems Enercon Technology For Sites at Risk of Ice Formation."
- [21] D. W. C. GmbH, "Summary of a Technical Validation of ENERCON's Rotor Blade De-Icing System," Varel, Germany, 2011.
- [22] E. Sjögren, "Wind Energy in Cold Climate experiences from Sweden and the world," Winterwind, 2015.
- [23] NORDEX, "Anti-icing higher yields in icy climates," 2015.
- [24] A. Camion, "Wind turbine operation optimization under icing and cold climate," Quebec Wind Energy Conference, 2014.
- [25] Vestas, "Vestas Anti-Icing System," 2018.

[26] D. Nielsen, "Vestas Cold Climate Solutions and next steps Climate," Winterwind, 2018.

- [27] D. E. C. Limited, "Dongfang Electric Corporation Limited," WinterWind, 2016.
- [28] Lagerwey, "Icing & Ice prevention," 2020. [Online]. Available: https://www.lagerwey.com/products/option/icing-ice-prevention/#enquiry. [Accessed: 08-Jan-2020].
- [29] B. Wind, "How it works," 2019.
- [30] Wicetec, "How to prevent Wind Turbine Icing? The WIPS Technology," 2019.
- [31] GE Power & Water, "Anti-Icing System," 2015.