IMPACT OF LIGHT ICE MASSES ON EXPECTED WIND POWER PRODUCTION

Winterwind 2020

Are, February 3rd, 20 Florian Rieger

fos4X Introduction

Motivation

Functionality

Methodology

Results

COMPANY OVERVIEW

fos4X has a 8-year history with strong growth, series integrations with several wind turbine manufacturers, a strong patent base, and a passionate team of industry experts

- Founded in 2010
- Spin-off of Technical University Munich
- 80 full-time employees
- 2 offices (Munich & Beijing)
- Deloitte Technology Fast 50 Award 2018 (14th cross-industry, 1st cleantech)
- 31 patents granted, 101 pending

We even have a movie about our digital vision... (1)

COMPANY OVERVIEUI

Installed base of 10,000+ sensors in 19 countries with the top turbine manufacturers

ON ICE MASSES AND BLADE LOADING Agenda

fos4X Introduction

Motivation

Functionality

Methodology

Results

MOTIVATION

What is the impact of light icing on wind turbine power output?

Nergica Report⁽¹⁾

- Performance assessment of rotor-mounted ice detectors
- Comparison of three different ice detection systems
- Two hub-mounted cameras have been used as reference
- The evaluation has shown that vibration-based systems function reliably and detect moderate and severe icing correctly
- The only criticism was the lack of an indicator for light icing

fos4X Introduction

Motivation

Functionality

Methodology

Results

FOS4X ROTOR ICE CONTROL

Technical Solution

Turn-key solution

- Available as retro-fit solution or installation ex factory
- Robust series hardware
- Precise vibration data from fiber optic sensor

fos4Acc 2D fos4Test Acceleration Sensor Measurement Unit Hub Control Cabinet

This certified configuration allows

- Blade ice detection
- **DNV-GL** Blade condition monitoring

7

LIHY USING FIBER OPTIC SENSING?

Fiber-optic sensors have advantages over conventional sensors

No electrical power at sensor position

Passive working principle

No EMI⁽¹⁾ and no lightning issues

Optical information transmission

Lower cabling and application cost

Mass product telecom fibers

Fit and forget: Long life, no maintenance

Robust sensors for FRP⁽²⁾ structures

l) EMI: electromagnetic interference

HOW ARE ICE MASSES ESTIMATED?

Wavelengths are converted into frequency, which relates to blade properties under excitation

HOW ARE MEASURED ICE MASSES USED BY CUSTOMERS?

Ice mass thresholds mark the beginning and end of ice events for customers to stop/start turbine

fos4X Introduction

Motivation

Functionality

Methodology

Results

METHODOLOGY

How the analysis has been done?

Data

- For the analysis, the data of 6 turbines within one wind farm has been used
- The data has been labeled according to 4 different icing levels: "No Ice", "Light Icing", "Ice Warning" and "Ice Alarm"

METHODOLOGY

How has the analysis been done?

Methods

fos4X Introduction

Motivation

Functionality

Methodology

Results

RESULTS

Deviations from power curve only due to high ice masses

RESULTS Light icing seems to have no impact on power production

RESULTS

Deviations from power curve only due to high ice masses

RESULTS Light icing seems to have no impact on power production

fos4X Introduction

Motivation

Functionality

Methodology

Results

SUMMARY AND OUTLOOK

What is the impact of light icing on wind power production?

- Light icing seems to have almost no effect on the turbine power output
- Depending on the application, it is still possible to lower alarm thresholds
- A larger analysis is ongoing with
 - narrowed down data like e.g. normal operation, free stream etc.
 - different turbine types and sites
 - other variables that might have impact other than icing

IMPACT OF LIGHT ICE MASSES ON EXPECTED WIND POWER PRODUCTION

Winterwind 2020

Are, February 3rd, 20 L. Vera-Tudela, F. Rieger*

RETROX - TECHNICAL SOLUTION

Update your turbines with smart sensors and edge analytics that connect to your established operating and monitoring systems

https://www.fos4x.de/x4edae/

RESULTS Park Overview

Deviation from expected power production in %

Turbine	No Ice	Light Ice	Moderate Ice	Severe Ice
А	0.86 +/- 5.93	0.38 +/- 7.90	-4.66 +/- 11.44	-8.29 +/- 13.65
В	0.68 +/- 6.39	0.37 +/- 7.44	0.19 +/- 9.13	0.54 +/- 9.68
С	0.61 +/- 5.37	0.79 +/- 6.81	-0.05 +/- 9.76	-1.18 +/- 11.52
D	0.55 +/- 6.7	0.52 +/- 7.7	-11.63 +/- 13.26	(-16.81 +/- 13.30
Park	0.65 +/- 6.24	0.58 +/- 7.55	-1.05 +/- 10.98	-1.10 +/- 12.50

