# Icing intensity evaluation based on LID-3300IP Ice Detector measurements

Winterwind 2020 | 4.2.2020 | Åre, Sweden

Company: Labkotec Oy Author: Jarkko Latonen, CTO







#### **Business areas**

- Ice detection systems
- Oil and grease separator alarms
- Level measuring and monitoring
- LabkoNet<sup>®</sup> remote monitoring system

#### Labkotec in brief

- Environmental focus
- Sustainability
- Established 1964
- Turnover 12 MEUR
- Personnel 50+





## Ice detector product and system portfolio

Past (since 1990's)



LID-3210C LID-3210D Present (2010 - today)



LID-3300IP Ice Detector



# LabkoNet.com remote monitoring



LID-3300IP with overvoltage protection



Ice warning systems for wind farms



# Basic operating principle of LID-3300IP



- Ice signal value decreases in icing conditions
- Ice alarm activates on a defined signal level
- Sensor heats up and cools down
- Ice alarm deactivates

















## Summary of real life cases





## Goals of the study

 To create a method to evaluate icing intensity from LID-3300IP data

To categorize icing events according to icing intensity



## Validation of the icing intensity method

#### Definition of icing events for icing wind tunnel tests

| Event name | Wind<br>speed<br>[m/s] | Temperature<br>[°C] | LWC<br>[g/m³] | lce growth<br>rate [g/h] |
|------------|------------------------|---------------------|---------------|--------------------------|
| Mild1      | 4                      | -1                  | 0.2           | 7                        |
| Mild2      | 7                      | -3                  | 0.4           | 25                       |
| Severe     | 10                     | -5                  | 0.4           | 98                       |
| Extreme    | 20                     | -15                 | 0.4           | 225                      |



Case Mild1 (-1°C, 4 m/s)





## Case Mild2 (-3°C, 7 m/s)





## Case Severe (-5°C, 10 m/s)





## Case Extreme (-15°C, 20 m/s)





## Conclusions

With the developed method, it was possible to

- calculate an icing intensity signal value from LID-3300IP Ice Detector measurement data
- separate and categorize icing events based on icing intensity value
- estimate the ice growth rate during an icing event

| Event<br>name | lce<br>growth<br>rate [g/h] | Intensity<br>signal<br>values |
|---------------|-----------------------------|-------------------------------|
| Mild1         | 7                           | <500                          |
| Mild2         | 25                          | 500 - 750                     |
| Severe        | 98                          | 1000-2000                     |
| Extreme       | 225                         | > 5000                        |





