Task 19 Ice Loss Tool – v2020

Timo Karlsson VTT Winterwind 2020 4. – 5. 2. 2020, Åre, Sweden

Contents

- Who
- Task 19 ?
- Method
- History
- What's new
- Next

Who

- Timo Karlsson
- IEA Wind Task 19 Operating Agent
- Research Scientist @ VTT
- Lot of experience with cold climate wind

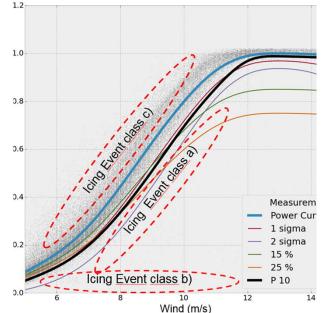
What is IEA Wind Task 19?

- Task 19 Wind Energy in Cold Climates international expert group
- Mission: Boost safe and cost efficient wind power deployment in cold climates
- Activities included:
 - Exchange information on international research collaborations and projects
 - Create recommendations, guidelines & best practices
 - Collect overview of available technologies and market potential
 - Disseminate reports, tools and findings
 - No research projects!
- Task active since 2001
- Funded through participating countries

Ice Loss Tool history

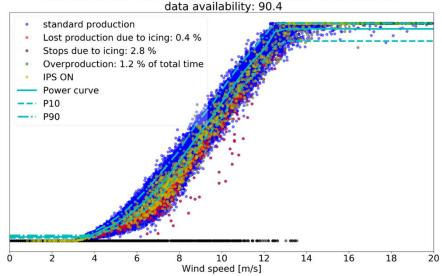
- Icing causes issues with turbine aerodynamics
 - Detectable as turbine output power dropping from the power curve
- Questions remained
 - How large of a drop evidence of icing?
 - How to define limits, how to deal with differences between turbine models?
 - How to make sure people use the same definition for "an icing event"
- → <u>Make software available</u>, using a robust, easy to understand, sensible definition of an icing event

T19 Ice Loss Tool


- Software to count icing lossess for SCADA data
 - Python 3 script
- Reference method and one, Task 19 recommended, definition of an icing event
- No external measurements needed just the variables that are usually available in SCADA data

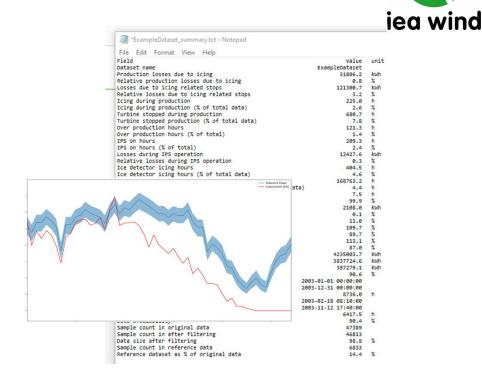
Ice detection method

- Splits a reference dataset from the data
 - No faults, no stops, temperature > 3 °C
- Puts the data in bins according to wind speed (and direction)
 - Calculates limits for alarm
 - P10 for icing
 - P90 for overproduction
- Runs the full dataset against the power curve and limits and flags possible icing events



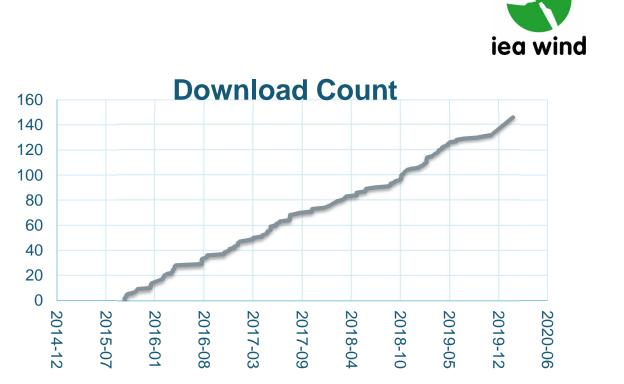
Ice detection method

VTT


- Icing event definition:
 - If temperature below a limit (+ 1 °C) and power below P10 for 30 consecutive minutes
 → icing event starts
 - If temperature above the limit for 30 minutes
 icing event stops
- Code flags stoppages separately
- Apparent overproduction is flagged with a similar criteria
 - If temperature below a limit (+ 1 °C) and power above P90 for 30 consecutive minutes
 icing event starts
 - If temperature above the limit for 30 minutes
 - ➔ icing event stops

Dataset: ExampleDataset start time: 2003-01-01 00:00:00, stop time: 2003-12-31 00:00:00

Tool outputs


- Outputs:
 - Summary
 - Alarm time series
 - Power curve, with lith limits and uncertainty
 - Filtered full time series with Alarm limits, for plotting
 - Icing event statistics

VTT

User Base

- Download count since first release
- Widespread interest in the industry
- Steady growth in userbase

VTT

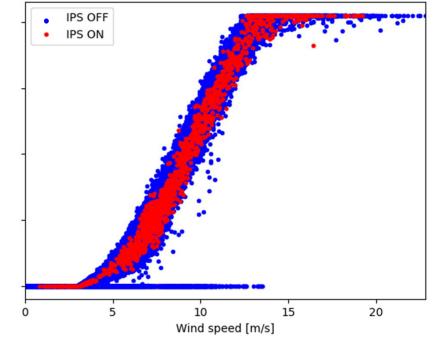
New version, out now

- New version on GitHub
- <u>https://github.com/IEAWind-Task19/T19IceLossMethod</u>
- Follow this page for new releases
- Report issues or feature requests here

GitHub, Inc. [US] https://github.com/IEAWind-Task19/T19IceLossMethod			□ ☆ :
Branch: master + New pull reque	st	Create new file Upload files Find	file Clone or download +
timok-vtt Corrected the summary	file calculation, inc	Latest com	nmit c7f3c12 on 14 Nov 2019
docs	Added the IEA wind disclaimers to the docur	nentation as well just to b	3 months ago
images	Added example data + a functioning example	e.ini	3 months ago
t19_ice_loss	Corrected the summary file calculation,		3 months ago
CHANGELOG	Populate the repository for publishing.		3 months ago
DISCLAIMER.txt	Populate the repository for publishing.		3 months ago
LICENSE	Update LICENSE		3 months ago
README.md	rename the banner image to not include cap	s or spaces	3 months ago
example.ini	Changed the data availability lines in the summary file to		3 months ago
ake_data2.csv	Added example data + a functioning example	e.ini	3 months ago
multifile_t19_counter.py	Populate the repository for publishing.		3 months ago
setup.py	Fixed the behaviour of status code stop in or	der to	3 months ago
t19_counter.py	Corrected the summary file calculation,		3 months ago
ask19iceloss.pdf	Added the documentation .pdf to repo for o	onvinience	3 months ago

Task19 Ice Loss Method

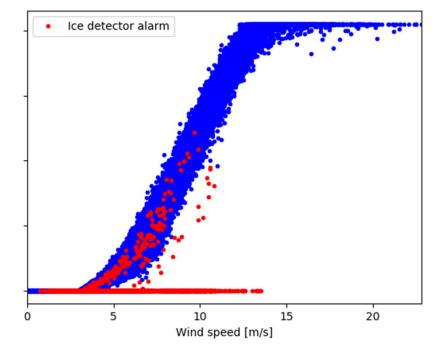
A standardized method to assess production losses due to icing from wind turbine SCADA data. This site describes a method to assess production losses due to icing based on standard SCADA data available from modern wind turbines.


New Since the previous update in 2017

- Added a stop code to the code
 - Stop code can be used to highlight icing caused stops if there is a separate status code in scada for that.
- Added IPS handling capability to loss counter
- Added ice detector as a separate state class
- Added Power curve uncertainty to power curves:
 - uncertainty defined as std_dev/mean
- Added Status code based stops as a separate case for output
 - Allows counting production losses during a certain status code
 - Added IPS and status code stops to summary file
 - Added power curve uncertainty to summary file and printed power curve
- Time Based Availability and Energy Based Availability

IPS Handling

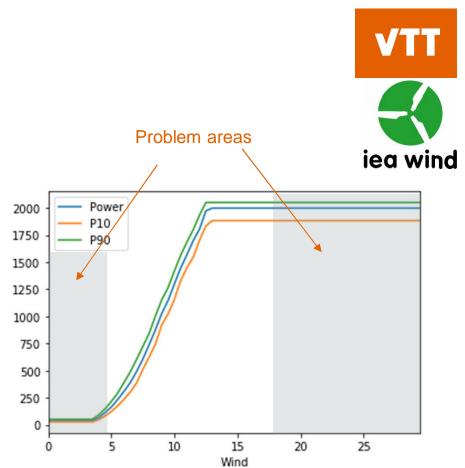
- Turbine heating is handled as a special case
 - All data points where IPS is on are separated into one special class
 - Production losses during heating are separated into its own set
- Icing losses can still be calculated for the times heating is not on


VTT

iea wind

Ice detector

- If there is an ice detector, possible to flag the moments ice detector given alarm is on
 - Compare to power curve based detection
- Can sometimes have interesting results


Lessons learned

- State, status, fault codes, data cleanup
 - The more time spent creating a clean, well behaved reference dataset, the better results are
- Anemometry
- Nacelle temperature measurement
 - Bias?
- Variablity in power measurements
 - Power curve sometimes really wide
 - Big differences from turbine to turbine
 - Has an effect on accuracy of method

Lessons learned

- Dataset size
 - Reference dataset size has an effect on results
- Large and small wind speeds
 - Method has issues at above nominal wind speeds
 - Likewise close to cut-in
 - Might make sense to limit the icing event detection by wind speed in the future

Next

- New hosting, more open development updates should be quicker
- More experiences needed
- Feedback, issue reports improvements welcome
- <u>https://github.com/IEAWind-</u> <u>Task19/T19IceLossMethod</u>

beyond the obvious

Timo Karlsson Timo.karlsson@vtt.fi +358404847197 @VTTFinland @iea_19 www.vttresearch.com/windpower

29/01/2020